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A virtual boundary method with improved computational
e�ciency using a multi-grid method
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SUMMARY

The �ow around spherical, solid objects is considered. The boundary conditions on the solid boundaries
have been applied by replacing the boundary with a surface force distribution on the surface, such
that the required boundary conditions are satis�ed. The velocity on the boundary is determined by
extrapolation from the �ow �eld. The source terms are determined iteratively, as part of the solution.
They are then averaged and are smoothed out to nearby computational grid points. A multi-grid scheme
has been used to enhance the computational e�ciency of the solution of the force equations. The
method has been evaluated for �ow around both moving and stationary spherical objects at very low
and intermediate Reynolds numbers. The results shows a second order accuracy of the method both at
creeping �ow and at Re=100. The multi-grid scheme is shown to enhance the convergence rate up to
a factor 10 as compared to single grid approach. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In almost all practical CFD applications one needs to account for solid boundaries with com-
plex geometries. Considering stationary boundaries there are several approaches for dealing
with this. For example, one may use structured body-�tted grids or unstructured grids to be
able to describe the required boundary geometry. The main advantage of such approaches is
that the boundary will be well de�ned and specifying boundary conditions is relatively straight
forward. However, generalized co-ordinates, in a solver using �nite di�erences, require that
the co-ordinate transform matrices (Jacobians) have to be stored or be recalculated. In addition
to this requirement, by co-ordinate transformation additional terms appear in the governing
equations. These terms imply a considerable increase in the number of computational opera-
tions. Furthermore, non-uniformities in the grid cause a slow-down in the convergence rate of
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many iterative solvers. Also, the grid generation has to be carried out with great care since
degenerate computational cells can, at least locally, dramatically increase the numerical errors.
Furthermore, considering moving boundaries one will either have to regenerate the grid as the
boundary is moved, which will lead to increased computational e�ort or one will have to make
use of overlapping, moving grids resulting in loss of accuracy in the required interpolations.
Using a �nite volume formulation one will avoid the problems associated with co-ordinate
transformation. However, in such solvers the order of accuracy of the discretization cannot
without a considerable amount of work be raised beyond two. Using uniform Cartesian grids,
a major advantage is that implementing higher order discretization schemes is quite straight
forward. Also, the solver can be made very e�cient and additional errors due to poor grid
quality are avoided. However, treatment of the boundaries will be more complex, i.e. one will
have to employ special methods for specifying boundary conditions so that a high order of
accuracy is retained. As a low order approximation one may use what is often referred to
as blocking, i.e. computational cells that totally or partially �lled with solid will have pre-set
values of all variables and are excluded from the solution process. Although, computationally
e�cient this method will lead to a �rst order (piece-wise linear) approximation of the surface.
Improving this approach one might consider higher order extrapolation of boundary conditions
from the �ow region to the blocked cells [1]. However, this method has some potential draw-
backs related to mass conservation and insu�cient grid resolution. Alternatively, one may use
a method based on the Volume of Fluid concept, denoted Volume of Solid (VOS) [2]. Hence,
one of the �uids is replaced by a solid by using an in�nite viscosity for that phase. Close to
the object surface the �uid viscosity is modi�ed based on the local volume fraction of solid
in the cells cut by the object surface.
Methods for describing complex moving non-deformable boundaries can be divided into

three major groups depending on the grid structure used. One may consider using a combina-
tion of moving and stationary grids which are overlapping, i.e. the surrounding is described
on a stationary grid and a moving grid is attached to the object. The main advantage of these
methods is that boundary conditions on the object can be set easily. A major disadvantage
is associated with numerical problems in the information transport between the grids, i.e. the
interpolation procedure implies reduced computational e�ciency and potentially also accu-
racy of the numerical scheme as compared to a single (stationary) grid approach. Also, this
approach would be unsuited when considering deformable objects.
Using the arbitrary Lagrangian Eulerian (ALE) method, e.g. References [3, 4] one needs

only one grid which deforms with the object movement. Again, a major advantage of this
kind of method is the possibility to easily set the surface boundary conditions. However, as
the object is moving the grid will deform, which might lead to large errors (at least locally)
if care is not taken in the grid generation.
Replacing the boundaries by momentum sources, also referred to as ‘�ctitious domain’

methods or ‘virtual (or immersed) boundary’ methods, can be advantageous when describing
both stationary and moving boundaries on Cartesian grids. Since the ‘boundary’ only exists
as a part of the numerical solution to the equations one needs not to regenerate the grid as
the objects is moved. Also, the forces acting on the object will be directly available, hence
studies of �uid–structure interaction is more straight forward since no extra computations are
required to calculate the displacement of the object. However, there the computational time is
increased due to the solution of the extra boundary equations. The method considered here, i.e.
modelling of the boundaries by adding momentum sources, originates from the early works
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by Peskin [5] who applied the basic approach for studying the �ow of blood past an elastic
(initially 2D) heart-valve lea�et. Recently, a second order accurate immersed boundary method
was presented by Lai and Peskin [6]. Other major contributions to the �eld have been made
by Zaleski [7, 8], Trygvasson [9], Glowinski [10–13] and Shyy [14, 15]. The main di�erences
among the di�erent approaches lies in the implementation of the technique rather than on the
basic principles. Thus, the basic approach is generally the same but methods for determining
the magnitude of the sources di�er. The idea is to determine the e�ect an object on the �uid
by adding source terms to the momentum equations. In the method by Glowinski et al. [10]
the discontinuity is considered directly and related to the pressure gradient. Goldstein et al.
[16] developed a method based on the same principles as are used in control system theory
for a two mode controller, i.e. the calculation of the source terms are based on an integrated
part and a part directly proportional to the velocity:

Fi(xi; t)= �
∫ t

0
ui(xi; �) d�+ �ui(xi; t) (1)

where � and � are constants. This approach was used by Saiki and Biringen [17] for studying
�ows around cylinders. Their results correlate well with experimental data both for stationary
and oscillating cylinders. Fadlun et al. [18] compared this method to the more direct method
by Modh-Yusof [19] which has the advantage that no constants has to be set a priori. Instead
the magnitude of the force is based directly on the momentum balance in the �ow, i.e.

ul+1i − uli
�t

=RHSl+1=2 + Fl+1=2i (2)

Fl+1=2i =−RHSl+1=2 + V
l+1
i − uli
�t

(3)

where RHS contains the convective, pressure and viscous terms and Vi is the velocity of the
boundary. The approach used in this work is similar to the one by Goldstein et al. [16]
concerning how the source term is determined (Equation (1)) however there are di�erences
in how the forces are distributed from the surface to the surrounding �uid. The application
of virtual boundary methods is mainly in two areas, detailed studies of two-phase �ows,
e.g. particle suspensions [13, 20], and for modelling of moving solid boundaries in practical
applications such as internal combustion engines [18] and stirred tanks [21].
The goal of the present work is to improve the virtual boundary method (VBM) of Revstedt

and Fuchs [22] both in terms of accuracy and computational e�ciency. Alternative methods
have been compared for all the components of the model. The improved method has been
applied to �ow around solid spherical objects Here, we consider both stationary and moving
three-dimensional objects at low as well as higher Reynolds number. First, creeping �ow is
considered, both for a stationary sphere in a free stream and a sphere a�ected by gravity in a
initially still �uid. Thereafter higher Reynolds numbers are considered both for stationary and
oscillating spheres. Together these simulations should give a good overview of the performance
and capabilities of the method under di�erent �ow situations. The results have been compared
to competing approaches as well as data (both analytical and experimental) from literature.
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2. MATHEMATICAL AND NUMERICAL FORMULATION

2.1. Governing equations

The equations governing isothermal, incompressible �ow of a Newtonian �uid can be written
as

@ui
@xi

=0 (4)

@ui
@t
+ uj

@ui
@xj

=−1
�
@p
@xi

+ �
@
@xj
@ui
@xj

+�i (5)

where �i is a source term.
The system of Equations (4)–(5) is well posed if the d-conditions are imposed on all the

boundaries, where d is the dimension of the problem. In the case of solid walls, one applies
usually the no-slip condition which implies that the local �uid velocity equals to the velocity
of the boundary at the same point. For non-solid object boundaries, the stresses has to be
in balance. This type of boundary conditions can be given implicitly and hence has to be
determined as part of the solution. At in�ow and out�ow, the velocity vector and its gradient,
respectively, are often assumed. The same number of conditions that has to be imposed even
when other expressions are used. Other types of conditions, such as for a boundary with
surface tension, could be applied equally.
The body forces �i, in our case vanish normally. However, we shall replace some of the

boundaries by a force distribution on the surface of the boundary. In this case the body �i
are computed on the boundaries so as to satisfy the local boundary conditions. Thus, �i do
not vanish only on certain surfaces. Consider a boundary in the form of a closed surface �
with the parameterization of the surface given by Xi(si; t), then the force in the �ow �eld can
be written as

�i(xj; t)=
∫∫

�
Fi(sj; t)�(xj − Xj) ds1 ds2 (6)

where Fi is the force on the surface and � is the three-dimensional Dirac delta function. This
singularity in the �ow �eld has of course impact on the numerics involved in solving the
equations as will be discussed below.

2.2. Flow solver

The incompressible Navier–Stokes are discretized on a system of locally re�ned Cartesian
grids (e.g. Reference [23]). The dependent variables are de�ned on a staggered grid. This
arrangement has the advantage that the system requires three boundary conditions (e.g. the
velocity vector) on all boundary points. The di�erent terms of the momentum and continuity
equations are approximated by �nite-di�erences. Basically, one may use �nite-di�erences of
any order. However, for higher order (i.e. more than two) additional boundary conditions has
to be speci�ed. Here, we use upwind �nite-di�erences of �rst- or third-order accuracy. The
lower order scheme (�rst order for the convective terms and second order for the others)
implies that the low order terms dominate, leading to a high level of numerical dissipation.
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Using directly higher order (third and fourth order approximations, respectively), leads to a
less robust solver with considerably slower convergence rate. To combine numerical e�ciency
with higher order accuracy, we introduce the higher order terms as a ‘single-step’ defect
correction [24]. One can show that for smooth problems this procedure is adequate to maintain
the theoretical accuracy of the high order scheme.
The time integration is done by a three-level implicit scheme. In each time step, the system

of equations is solved iteratively using a multi-grid solver. The relaxation scheme within the
multi-grid solver comprises of point wise relaxation of the momentum equations coupled with
a point wise smoothing of the continuity equation. At the latter step, both the velocity vector
and the pressure are corrected so that the residuals of the momentum equations shall not be
changed as the continuity equation is satis�ed. This approach is equivalent to an approximate
diagonalization of the system of equations [23, 24].

2.3. Boundary conditions

The basic idea behind this boundary method is that the forces exerted by the �ow on the
object should equal the forces exerted by the object on the �ow. The method is based on the
work by Revstedt and Fuchs [22] and includes the following steps:

(1) Discretization of the surface. A 2D grid is generated on the object surface such that
the mesh size is somewhat smaller than that of the computational grid.

(2) Calculation of the boundary velocity. The velocity in each node on the surface mesh
is determined from the velocities of the surrounding nodes of the computational grid.

(3) Determining the boundary forces. The forces on the boundary are calculated based on
the local velocity defect, i.e. the di�erence between the velocity obtained in step 2 and
the boundary condition.

(4) Distribution of the force �eld. The resulting forces are distributed back to the compu-
tational grid and will appear as source terms in the momentum equations.

The velocity on the boundary can be determined by averaging or interpolation. Here, three-
dimensional Lagrangian polynomials based on the interpolation formula by Ericsson and Fuchs
[25] are used.

ufi =
n+1∑
r=1

n+1∑
s=1

n+1∑
t=1

(
n+1∏
k=1k �=r

�− �k
�r − �k

)(
n+1∏
k=1m�=s

�− �m
�s − �m

)(
n+1∏
k=1p �=t

	− 	p
	t − 	p

)
uirst (7)

These polynomials can be either centred around the boundary (interpolation) or end at the
boundary (extrapolation), where the latter approach should be the more reasonable. The reason
for this is twofold. It is not certain that a higher order interpolation gives higher order accuracy
of the result. This is due to the fact that when the solution is converged one should, because
of the no-slip condition, have a discontinuous velocity pro�le over the surface. However, since
the �nite di�erences are taken over the boundary this is in reality not the case. Also, from
a physical point of view it is more reasonable to use the velocities in the nodes outside the
surface of the object. Although the equations are solved in the whole domain the �ow inside
the solid object has no physical meaning and hence should not a�ect the surface velocity
directly. Likewise, if the boundary is a �uid interface one would extrapolate to the boundary
from both sides. Both interpolation and extrapolation using third and �fth order polynomials
have been used here.
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The surface force contributions are calculated based on the di�erence between the calculated
boundary velocity, ufi , and the boundary condition, u

b
i , according to

�Fi =
�
h2
(ufi − ubi )= �

�ui
h2

(8)

Fn+1i = Fni +�F
n+1
i (9)

where � is a relaxation parameter and n denotes iteration number. Hence, close to the object
surface it is assumed that viscous e�ects dominate the �ow, which is true provided the grid
resolution is su�cient.
As was stated above, the boundary represents a discontinuity in the �ow and the force

exerted can accordingly be described by a Dirac function (Equation (6)). Of course, this
cannot be represented directly on the computational grid and instead a distribution function
has to be used to transfer the forces back to the computational grid. For this the approach
from Revstedt and Fuchs [22] is kept, i.e. a Gaussian distribution function is used. However,
one may also consider other distribution functions, such as the discrete delta function by
Lai and Peskin [6]. Using the Gaussian approximation, the source terms in the momentum
equations (5) can then be written as

�i=
1
N

N∑
k=1
GFFi (10)

where N is the number of contributions from the surface grid to a certain grid point and GF
is a Gaussian distribution function

GF =
1

(

√
2�)3

e−(�
2+�2+	2)=2
2 (11)

where the standard deviation, 
, is of the order of the computational grid size. As for the
boundary velocity, the distribution of source terms may be performed on either one or both
sides of the boundary. Again, both methods have been applied. However, using the same
reasoning as for the velocity, the force should only distributed to the interior of the body.
Thereby not directly a�ecting the �ow �eld of interest.
As was noted by Revstedt and Fuchs [22], the convergence rate using this method is rather

poor. The obvious reason is of course that instead of having only one iterative process (that
of solving the �ow �eld) we also have to iteratively solve for the shape of the boundary.
Hence, the �ow situation changes as the object is formed, i.e. we ‘waste’ some iterations in
the �ow �eld initially to solve a problem that is quite far from the �nal one. It can also
be explained as, that this force method, as it is converging, introduces high frequency error
components with large amplitude to the �ow �eld. The smoothing process requires that for
elliptic problems as the ones considered in this work the information from the boundary is
transported to the whole domain. This data transfer rate is rather low if only the �nest grid
is used. However, a multi-grid scheme can easily rectify this.
The multi-grid implementation used here has the following steps. After a given grid is

relaxed and the corresponding source terms are determined according to steps 1–4 above, a
coarse grid problem for the boundary force is de�ned. The boundary ‘equation’ on the given
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grid (superscript k) is de�ned as

�Fki =R
k
i (12)

Rki will vanish on all grids when the boundary conditions are satis�ed. The ‘error’ on the
�nest grid (M) is

RMi = �
ufi − ubi
h2

(13)

The ‘boundary equation’ on the coarser grid (k) is de�ned through the ‘error’ in the �ner
grid Rk+1i :

Rki = I
k+1
k Rk+1i + �

ufi − ubi
h2

(14)

where the velocities are taken on the coarse grid. An initial value for the coarse grid force is
given by

F̃ ki = I
k+1
k F̃ k+1i (15)

where the prolongation operator I k+1k is a linear interpolation.
In the full multi-grid calculations, one has to satisfy Equation (12) during the relaxation

process. Once, the coarsest grid has been fully solved, the correction to the body force (i.e. the
change in F̃ ki between before and after relaxations) is interpolated and added to the existing
force on the surface node points. The main advantage of this scheme is that the corrections of
the boundary force are distributed to the whole �eld at high rate on the coarse grids and hence
leading to an overall faster convergence. It should also be noted that the force MG-method
need not be applied to all the grid levels of the �ow solver as will be demonstrated below. It
might even be undesirable from an accuracy point of view to calculate and distribute source
terms on computational grids where the grid spacing is larger than the object size. For grid
levels excluded from the force MG and ordinary restriction operator is used to transfer the
distributed source terms to coarser grid, i.e.

�k−1i = I k−1k �ki (16)

here the restriction operator is an ordinary top-hat �ltering. This approach is also used in the
single grid simulations.

3. COMPUTATIONAL SET-UP

The method has been applied to the test case of �ow around a solid spherical object. First,
creeping �ow is considered, both for a stationary sphere in a free stream and a sphere a�ected
by gravity in a initially still �uid. Thereafter higher Reynolds numbers, Re=100; 300 and
1000, are considered both for stationary and oscillating spheres. Since the wake of a sphere
becomes unsteady at about Re=280 (e.g. Reference [26]) temporally resolved simulations
are required for the Re=300 and 1000 cases. Together these simulations should give a good
overview of the performance and capabilities of the method under di�erent �ow situations.
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Table I. Computed cases for Stokes �ow.

Grid resolutions
Case Boundary velocity Force distribution Multi-grid (cells per unit length)

3EXT 3rd order extrapolation 1-sided No 8, 16, 32, 64
3EXTMG 3rd order extrapolation 1-sided Yes 8, 16, 32, 64
5INT1s 5th order interpolation 1-sided No 8, 16, 32
5INT2s 5th order interpolation 2-sided No 8, 16, 32
3INT 3rd order interpolation 1-sided No 8, 16, 32
BLK Blocking — — 8, 16, 32, 64
EXB Exact boundary conditions — — 8, 16, 32, 64

Table II. Computed cases for moderate Reynolds numbers.

Force
Case Reynolds number Boundary velocity distribution Multi-grid Grid resolutions Note

3EXT 100 3rd order extrapolation 1-sided No 8, 16, 32
3EXTMG 100 3rd order extrapolation 1-sided Yes 8, 16, 32
5INT1s 100 5th order interpolation 1-sided No 8, 16, 32
5INT2s 100 5th order interpolation 2-sided No 8, 16, 32
5INT1s 300 5th order interpolation 1-sided No 32
5INT2sMG 300 5th order interpolation 2-sided Yes 32 St=0; 0:3; 3:0
5INT2s 300 5th order interpolation 2-sided No 32 St=0; 0:3; 3:0
5INT2s 1000 5th order interpolation 2-sided No 32

3.1. Creeping �ow

The computational domain used for the stationary sphere is a cubic box with the side length
16Dsp, centred in this box is a spherical object of diameter Dsp. The exact solution, derived by
Stokes [27] is set as boundary condition on all outer boundaries. In the reference cases, where
blocking of cells is used, either zero velocity or the exact solution is used on the surface of
the sphere, depending on the accuracy required. A succession of local grid re�nements are
used around the object. The grid resolution has been varied from 16 to 64 computational cells
per unit length resulting in about 3 000 000 cells in the best resolved cases. The simulated
cases are summarised in Table I. For the falling sphere the size of the computational domain
was 8D×8D×16D. Again with local re�nements around the sphere, giving a resolution of 32
cells per unit length. The time step was set using a CFL number of 0.1 based on a reference
velocity of unity.

3.2. Moderate Reynolds numbers

For Re=100, and 300 the computational domain is a rectangular box of size 12D×12D×24D
with the sphere placed in the centre. For Re=1000 the domain is elongated to 36D with the
sphere still in the same position. In these cases local re�nements are also used. The �nest
with 32 cells per unit length. The computed cases and grid con�gurations are presented in
Table II. On the in�ow boundary a constant velocity is set, on the out�ow a ordinary Neumann
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condition adjusted to ensure global mass conservation. On all other boundaries slip conditions
are used. The temporal resolution was also in this case set using NCFL=0:2.

4. RESULTS

4.1. Creeping �ow

Consider creeping �uid motion (Re � 1) around a solid spherical object. For this particular
�ow case an exact solution was �rst derived by Stokes [27]. Using the spherical polar co-
ordinate system the velocity components can be written as

ur =U cos �
(
1 +

a3

2r3
− 3a
2r

)
(17)

u� =U sin �
(

−1 + a3

4r3
+
3a
4r

)
(18)

where a is the sphere radius and U is the free stream velocity.
Figure 1 shows the error relative to the Stokes’ solution for creeping �ow as a function

of grid resolution. The results from using blocking and from applying the exact solution on
the boundary have been added as references. The former is a �rst order method and the
latter should represent the best solution one can obtain with this computational code. From
Figure 1 together with Table III, showing the overall order of accuracy calculated over the
three coarsest grids, three main results can be extracted. Using interpolation to determine
the surface velocity gives smaller errors than using extrapolation from the external �ow �eld,
however the order of accuracy is somewhat higher in the extrapolation case. Also, the order of
the interpolation polynomial seems to in�uence the result only marginally. Using the multi-
grid algorithm also seems to have very limited e�ect the order of accuracy, as would be
expected. Concerning the force distribution, there are distinct di�erences in the levels of
the errors between using single- and double-sided distribution from the surface. The double-
sided distribution yields a signi�cantly larger error and also lower order of accuracy (see
Table III). This can be explained by studying Figure 2(a) showing pro�les of velocity in the
main �ow direction at the stagnation points and the shoulders of the sphere. The velocity in
the single-sided distribution case follows the exact solution closely, whereas in the double-
sided distribution case there is a fairly large deviation. The reason for this behaviour is that
the source terms in the single-sided case only a�ects the �ow �eld inside the body leaving
the exterior or actual �ow �eld to be a�ected only through the boundary condition. As can be
seen in the close up in Figure 2(b) the e�ects of the double-sided distribution are visible far
beyond the distribution range. However, the distance of in�uence will probably be substantially
decreased in more advection dominated �ows.
In the previous model by Revstedt and Fuchs [22] the convergence rate was quite poor.

However, using the multi-grid method proposed above one can substantially increase the
convergence rate. Figure 3 shows the error in boundary velocity as a function of work units.
A work unit is here de�ned as the amount of computational work needed for one iteration on
the �nest grid of the �ow solver, i.e. on the next coarser grid one iteration corresponds to 1

8
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Figure 1. Maximum and L2 norms of velocity errors. (a) L2 norm x direction, (b) max norm x direction,
(c) L2 norm y direction, (d) max norm y direction.

Table III. Order of accuracy of the Stokes �ow solution in the stream wise (W ) and cross stream
(U ) directions considering the maximum and L2 norms.

Case Wmax WL2 Umax UL2

3rd order extrapolation 2.3 2.3 3.0 2.6
3rd order extrapolation with multi-grid 1.9 2.0 2.0 2.1
5th order interpolation 1.8 1.7 1.5 1.6
5th order interpolation with 2-sided distribution 1.1 1.2 1.3 1.3
3rd order interpolation 1.8 1.7 1.4 1.3
Blocking 1.0 1.1 1.0 1.0
Exact boundary conditions 2.1 1.7 1.9 1.7

work unit since the grid resolution is changed a factor 2. The grid structure of the �ow solver
(5 multi-grid levels) is the same in all cases but the number of grid levels on the surface
has been varied from 1 to 5. As can be seen there is a continuous increase in convergence
rate with increasing number of multi-grid levels. As a comparison we also used a scheme
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Figure 2. Velocity in the main �ow direction at four locations (a) and close up of the upper part (b).
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Figure 3. Error in boundary velocity as a function of work units, maximum norm (a) and L2 norm (b).

Table IV. CPU-time relative to the single grid case for the same number of work units.

Case Relative CPU-time

Single grid 1
2 MG-levels 1.16
3 MG-levels 1.19
4 MG-levels 1.20
5 MG-levels 1.21
Single grid + local 2.85
5 MG-levels + local 3.10

where additional relaxations are performed in the cells a�ected by the source terms. This
leads also to an increase in convergence rate comparable to using 5 MG-levels. However,
‘local’ relaxations will, as they are implemented here, also increase the computational time
substantially. Considering the CPU-time required relative to the single grid case (Table IV),
the multi-grid case will require about 20% more computational e�ort for the same number of
work units. Whereas the local relaxations increase the required CPU-time by almost 300%.
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Although, it should be noted that the local relaxations method has not been optimised here,
only used as is.
Using this method one is able to obtain the force exerted by the �ow on the object by

integrating the distribute source terms over the volume of interest as was shown by Revstedt
and Fuchs [22]. This can be used for determining the boundary conditions for a freely moving
object. It is here demonstrated for a spherical object a�ected by gravity in a still �uid at low
Reynolds number (approx. 0.0001) and high density ratio (��=7000). Considering Newton’s
second law of motion one can write the force balance for such an object as

m
dUi
dt
=Fi (19)

where m is the mass of the object, Ui is the object velocity and Fi is the sum of all the
forces acting on the body. The right-hand side of Equation (19) is determined by integration
of the source terms over the volume �

Fi=
∫
�
�i d� (20)

which should equal the acceleration times the mass of the body. One is then able to set the
boundary condition for the next time step as

Ui=
1
m
(Fi�t)=

dUi
dt
�t (21)

Since, in this case, the Reynolds number is very low (Stokes �ow) and the density ratio
is very high one can neglect all contributions to the right hand side of Equation (19) except
drag and buoyancy. Hence,

dUi
dt
=
18U 2

i

Rep ��
− (1− ��)gi (22)

which of course has the solution

Ui(t) =
Re gi
18

(
1
��

− 1
)
e−18��=Re t (23)

Ui(0) = 0 (24)

Figure 4(a) shows the object velocity as a function of time for the 5INT2s and 5INT1s
approaches. After a relatively short acceleration phase, the object reaches the terminal velocity.
The discrepancy in terminal velocity between the simulations and the analytical solution can
be seen in Figure 4(b). The di�erence in error between 5INT2s and 5INT1s is quite large
and the larger error in terminal velocity for 5INT2s is probably due to the same e�ect as was
shown for a stationary sphere in Figure 2.

4.2. Moderate Reynolds numbers

To see the in�uence of higher Reynolds number and to investigate the behaviour of the method
in time dependent �ows, simulations have been made for stationary spheres at Re=100; 300,
and 1000. The three test cases considered here have been chosen to cover the �ow regimes
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Figure 4. Velocity (a) and error compared to the analytical solution
(b) of a spherical object in free fall.
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Figure 5. L2-norm of velocity error at Re=100 for single and multi-grid cases.

from stationary symmetric �ows to time dependent vortex shedding �ows. At Re=100 the
�ow is still stationary and axisymmetric. As the Reynolds number is increased a number of
instabilities appear leading to an unsteady �ow, this process is described by Tomboulides and
Orszag [28]. Johnson and Patel [26] reports that the �ow becomes unsteady at a Reynolds
number of 280, so that at Re=300 one has a time dependent �ow �eld. At Re=1000 the
�ow is more chaotic and several distinct frequencies are present [28].
First consider the �ow at Re=100. Due to the lack of an exact solution the order of

accuracy has been estimated by considering the L1-norm of the velocity,

‖u‖1 = 1
N

N∑
n=1
(
√
uiui)n (25)
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Table V. Order of accuracy (p) as de�ned by Equation (26) at Re=100.

Case p

3rd order extrapolation 2.0
3rd order extrapolation with multi-grid 1.7
5th order interpolation 1.9
5th order interpolation with 2-sided distribution 1.1

Hence, evaluating the �ow using three simulations with the mesh spacing halved between
each simulation one may calculate the order of accuracy from

p=
ln(‖uh − uh=2‖1=‖uh=2 − uh=4‖)1

ln 2
(26)

For the case Re=100 the same methods for determining boundary velocity and distribut-
ing forces as for Stokes’ �ow have been used. The results from the accuracy study using
Equation (26) are shown in Table V. As can be seen, the second order behaviour of the
extrapolation method is retained at this Reynolds number. Again a slight decrease in the or-
der of accuracy is seen when using the multi-grid approach. Also, comparing the �fth order
interpolation cases one can see the in�uence of the force distribution. Again, we observe
the same behaviour as for Stokes’ �ow, i.e. two-sided force distributions lower the order of
accuracy from 2 to 1. Concerning computational e�ciency one can see that the multi-grid
method gives a substantially increased convergence rate although the speed-up is not as large
as for Stokes’ �ow (Figure 5).
As mentioned above, at Re=300 the �ow is time dependent, which will somewhat alter the

requirements of the VBM since the boundary velocity will have to be converged in each time
step, i.e. in relatively few work units. Since, for Re=100 there was no di�erence between
the extrapolation and the interpolation cases only the 5INT1s and 5INT2s approaches are
used for Re=300. The time averaged �ow �elds are depicted in Figure 6, the �ow is at
this Reynolds number not axisymmetric (not even in average) although there is a plane of
symmetry, as was noted by Johnson and Patel [26]. Hence, there will be a lift force with a
well de�ned direction acting on the sphere. This can clearly be seen in Figure 6, showing the
averaged velocity �elds in planes parallel and perpendicular to the lift force. As can be seen
from Figure 7, the 5INT1s fail to predict the drag coe�cient accurately, and if run longer the
computation will diverge. This might be caused by the higher order accuracy in combination
with insu�cient resolution of the boundary layer. Further increasing the grid resolution was
unfortunately not possible due to too long simulation times. However, the 5INT2s gives a
stable solution. The 5INT2s case has been compared to data available in the literature and in
Figure 8(a) are shown the drag and lift coe�cients compared to the numerical results obtained
by Johnson and Patel [26]. The agreement is good although the present results over-predict
the drag coe�cient somewhat. Figure 8(b) shows the spectral density of the forces, the main
frequency peak is observed at approximately St=0:13 and a smaller peak at the �rst harmonic
(St≈ 0:26). This has been compared with the data from simulations by Johnson and Patel [26],
Tomboulides and Orszag [28] and Ploumhans et al. [29]. As can be seen in Table VI, the
frequency is a bit under-predicted in the present study, however comparing the time averaged
values of CD and CL as well as the amplitudes thereof, the agreement is very good.
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Figure 6. Average velocity �elds at Re=300 in the planes parallel (a) and normal to the lift force (b).
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Figure 7. Time history of drag coe�cient at Re=300 for �rst and second order methods.
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Figure 8. Time history (a) and spectral content (b) of the lift and drag coe�cients at Re=300.

Considering the convergence rate one might expect the multi-grid to be even more useful
since low errors in the boundary conditions are required in each time step. However, as is
seen in Figure 9(a), the multi-grid method is only e�ective in the start up sequence of the
simulation, i.e. as the spherical object is ‘created’. Thereafter the variations in conditions
between to time steps is so small that the errors in boundary velocity can be kept at a low
level even in the single grid simulation. In order to study the method under conditions with
higher temporal variations, two cases with a sphere oscillating in the cross-stream directions
were considered. The amplitude was in both cases 0:2D and the Strouhal numbers were 0:3
and 3:0, respectively. The results of this can be seen in Figure 9(b) and 9(c), showing the
convergence history in one representative time step. For the lower Strouhal number the e�ects
of the multi-grid is only marginal but as the Strouhal number is increased the importance of
it becomes much greater.
At Re=1000 again only the double sided distribution is used. As can be seen in

Figure 10(a) the is more chaotic, with more frequencies present, than for Re=300. However,
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Table VI. Force coe�cients and shedding frequency for Re=300.

St CD �CD CL �CL

Present study 0:131 0.67 2:4× 10−3 −0:068 1:2× 10−2

Johnson and Patel [26] 0.137 0:656 3:5× 10−3 −0:069 1:6× 10−2

Tomboulides and Orszag [28] 0.136 0:671 2:8× 10−3 — —
Ploumhans et al. [29] 0.135 0:683 2:5× 10−3 −0:061 1:4× 10−2
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Figure 9. L2-norm of velocity error at Re=300 and St=0(a), 0.3(b), 3.0(c).

the time averaged �ow �eld is axisymmetric (Figure 10(b)). In Figure 11 the time average and
�uctuation of velocity in the main �ow direction is plotted and compared to the experimental
data of Wu and Faeth [30] and data from the simulations by Tomboulides and Orszag [28].
As can be seen, the present method captures well the strength and length of the recirculation
zone and also the �uctuations are in good agreement with previous data. The discrepancies
found further down stream in the wake might be due to insu�cient grid resolution in that
region of the computational domain.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:775–795



792 J. REVSTEDT

Figure 10. Instantaneous and averaged velocity �elds at Re=1000.

5. CONCLUDING REMARKS

A second order accurate method for describing complex boundaries have been developed
and applied to �ow around solid spherical objects. Good agreement with both experimen-
tal data and data from other simulation approaches was achieved. A multi-grid scheme for
the surface forces was also introduced. Major advantages with this type of method is that
grid generation and implementation of higher order discretization is straight forward since
the grid is Cartesian. However, resolving the �ow close to the boundary is essential to
achieve good overall accuracy. Since Cartesian grids are used and the equations are solved
also in the interior of the object one will, in order to resolve the interface, also resolve
the interior. Hence, one will ‘waste’ computational cells, although this might be remedied
by using re�nement only close to the interface (so called ‘clustering’). Anyway, it was
concluded by Fadlun et al. [18] that the computational power required for their approach
was substantially lower than for a code using unstructured, body-�tted and deforming
grid.
The following main conclusions can be drawn from the results of this work:

• The order of accuracy is largely dependent on how the source terms are distributed to the
computational domain. The order of the interpolation/extrapolation scheme to determine
the boundary velocity seems to have less in�uence, at least if the order is above 2. It was
indicated by Revstedt and Fuchs [22] that using a second order Lagrangian polynomial
decreases the overall order of accuracy. In the present state the method is, at best,
second order accurate. By avoiding to take �nite di�erences across the interface one
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Figure 11. Mean (a) and rms. of �uctuation (b) of the main �ow velocity
along the wake centre line for Re=1000.

might increase the order of accuracy further. This can for example be achieved by using
a essentially non-oscillatory (ENO) scheme in the discretization.

• The multi-grid scheme substantially increases the rate of convergence, up to a factor
10. This is shown to be most useful for stationary �ows and time dependent situations
with rapid changes in boundary conditions. For time dependent �ows with stationary
boundaries the e�ect of the multi-grid scheme was only seen in the start-up of the
simulation, i.e. as the boundary is formed. Hence, the full potential of the multi-grid is
utilized in stationary �ows, e.g low Reynolds number �ows but might also be considered
for statistically stationary high Reynolds number �ows when using a Reynolds averaged
Navier–Stokes (RANS) approach, and for �ows with time dependent boundaries, e.g.
high frequency oscillating objects.
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• For higher Reynolds numbers (above 300) the second order method fails to converge.
This might be due to insu�cient resolution of the boundary layer, causing the higher
order interpolation to introduce instabilities in the solution. However, the �rst order
approach still gives very good results as compared to literature data.

• As the forces acting on the boundary are directly available, one may, after veri�cation of
the method at higher Reynolds numbers and by coupling it to a model for structural anal-
ysis, obtain an e�cient method for studying vibrating/deformable structures, for example
tube bundles.
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